HCOC: hierarchical classifier with overlapping class groups

Igor T. Podolak

Group of Machine Learning Methods GMUM
Theoretical Foundations of Machine Learning, Będlewo 2015

20th February 2015
Hierarchical classifier with overlapping class groups

- classification problem
- model building
- predefined class hierarchy
- model's architecture
- weak classifiers
- overlapping of class groups
- learning
- evaluation methods
- cluster competence
- HCOC
- fusion of training methods
- training vs. hierarchy
- weak classifiers
- convergence
- cluster weights and evaluation

Igor T. Podolak igor.podolak@uj.edu.pl
Problem statement

1. high number of classes
 1.1 right model architecture
 1.2 unbalanced number of class examples
 1.3 divide the problem into simpler ones?

2. what is a hierarchical classification?
 2.1 predefined class hierarchy
 2.2 map natural class groups to the model architecture

3. solve by splitting the output classification space
 3.1 hierarchically group examples from similar classes
 3.2 hypothesi: if examples from classes A and B are frequently mistaken, then they are probably similar
 3.2.1 define the similarity of classes with the frequency of incorrect classifications
 3.3 find the class groups using weak classifiers (hierarchically)
4. HCOC: fusion of supervised training in nodes and unsupervised cluster building
 4.1 supervised training returns class probability vectors
 4.1.1 hypothesis: similar classification vectors \implies examples hard to differentiate \implies classes are similar
 4.2 clustering in classifiers activation space recovers classification errors
 4.3 a classifier trained in supervised mode might be weak
HCOC architecture

classifier tree root

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
HCOC architecture

Each node is a separate classifier

\[P(C = A|x) \]

\(\text{Cl} \) in node returns a class probability vector

Similar activations represent similar classes, thus we may split them into subproblems
HCOC architecture

some classes are classified similarly

Similarly classified classes are grouped together into clusters

Grouping makes it possible to recover some classification errors later

Clusters may overlap
HCOC architecture

classifiers are weak

K-class classifier is at least weak if the probability that the activation for the true class is at least $1/K$

K-class Cl is weak iff $\mathbb{E}[Cl_i(x)|true(x) = i]$ for true class is higher than $\alpha(K)$, where

$$\alpha(K) = \min_{\alpha} \left[\alpha : (-1)^i \binom{K-1}{i} (1 - \frac{i\alpha}{1-\alpha})^{K-2} > \frac{1}{K} \right]$$

<table>
<thead>
<tr>
<th>K</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>10</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha(K)$</td>
<td>0.500</td>
<td>0.400</td>
<td>0.333</td>
<td>0.289</td>
<td>0.256</td>
<td>0.230</td>
<td>0.180</td>
<td>0.110</td>
</tr>
</tbody>
</table>
HCOC architecture

Cluster weights are computed separately for each given input vector.

\[
 w_l(x) = \frac{\sum_{k=1}^{K} f_{kl} C_l(x)}{\sum_{l'=1}^{L} \sum_{k'=1}^{K} f_{kl'} C_{l'}(x)}
\]

\[
 f_{kl} = \begin{cases}
 1 & C_k \in Q' \\
 0 & C_k \notin Q'
\end{cases}
\]

\(w_l(x) \) corresponds to softmax, therefore a model that predicts a cluster is a classifier.

different competence measures
HCOC architecture

clustering methods

SAHN based, Bayesian, GNG based

Bayesian: join classes using error matrix

GNG: build clusters online simultaneously with classifier training

control diversity of clusters and descendant classifiers
HCOC architecture

clusters overlap

clusters overlap increases the HCOC accuracy ability

individual classes may belong to several clusters

which clusters do overlap comes from the inability of classifier to solve the actual problem: an architecture corresponding to the problem is being built

clusters overlap increases the HCOC accuracy ability
HCOC architecture

Independence of HCOC base classifiers

Each C_i solves its own subproblem

Subtrees may be built independently in parallel
HCOC architecture

classification on different levels

\[\text{A B C D E F G H I J K L M N O P Q R S T U V W X Y Z}\]

HCOC is built recursively: the above statement strengthens classification on different levels.
HCOC architecture

HCOC convergence of training

Let HCOC be two-level model with $\ell(x, t, h(x)) = (t-h(x))^2$. The HCOC risk is lower than risk of root C^0 provided that classes are spread independently between clusters and

$$\sum_k \sum_l \sum_i p_i f_{kl} m_{i1} m_{i0}^0$$

is maximised and higher than

$$\sum_i p_i \sum_k (m_{ik})^2$$

HCOC is built recursively: the above statement strengthens with each level added.
The proposed weakness definition allows to control the weakness of node classifiers. More clusters give better results.

HCOC architecture

Weakness property of base classifiers

Abcdefghijklmnopqrstuvwxyz

A B E G J X

M P H I K Q R

Q R D F L S T Z

U X E V W Y A F

Abcdefghijklmnopqrstuvwxyz

A B E G J X

M P H I K Q R

Q R D F L S T Z

U X E V W Y A F

More clusters give better results.

Proposed weakness definition allows to control the weakness of node classifiers.
HCOC architecture

it is possible to build several simple classifiers independently

ABCDEFHJKLMNQPQRSTUWXYZ

HCOC architecture

it is possible to build several simple classifiers independently

ABCDEFHJKLMNQPQRSTUWXYZ
HCOC architecture

complete classifier

ABCDEF

GH

HIJKL

MN

OPQR

ST

UVW

XYZ

J X C

D M P

MPHIKQR

QRDFLSTZ

STZNOUXE

UXEVWYAF

Restricted

Single-path

α

a priori p

restricted

All-subtrees

restricted

∃
HCOC architecture

evaluation of HCOC

\[P(C_j|x) = y_j(x) = \sum_{l=1}^{L} w_l(x)y'_j(x) \]

where \(y'_j(x) \) is the return value of descendent classifier with competence \(w_l(x) \) for given \(x \)

geometric mean in overlaps

possible methods: **All-subtrees, Single-path, Restricted** and **\(\alpha \)-Restricted**

All-subtrees evaluate all paths

Single-path select only the highest competence \(w_l \) path
Restricted and α-Restricted approaches

only some clusters shall have competence higher than *a priori* p_i probability of classes

evaluation of others is equal of adding some noise

Restricted use only clusters where at least one class has activation higher than *a priori* p_i

α-Restricted use only clusters where $\exists \ C_k \ Cl_k(x) > \alpha(K)$ (weakness condition is being used)
HCOC architecture

Restricted and **α-Restricted**

Both methods use only paths which carry correct information with high probability, i.e., most correct information.

Both have higher accuracy.
HCOC architecture

Igor T. Podolak igor.podolak@uj.edu.pl

HCOC: hierarchical classifier with overlapping class groups
HCOC properties

1. fusion of supervised and unsupervised training
 1.1 possible solution for a high number of output classes

2. a split corresponds to complexity of subproblem at a node
 2.1 subproblems overlap, hence improvement of accuracy
 2.2 problem split through unsupervised clustering of class outputs
 2.3 clustering control results in different resulting subproblems
 2.4 different clustering methods
 2.4.1 parallel training

3. weak classifiers in nodes
 3.1 probabilistic measure of classifiers weakness
 3.2 provides for simple weakness control
HCOC

properties

4. classifiers competence computed separately for each input vector classified

5. different methods of evaluation
 5.1 simple reduction of unimportant information (noise)
 5.2 evaluation is related to classifier weakness

6. HCOC properties
 6.1 classifier risk is minimised with new layers being added
 6.2 control of diversity
Theoretical foundations of machine learning, Będlewo
group of machine
learning research

HCOC: hierarchical classifier with overlapping class groups